So now we will learn the technique that is mostly missing from many scientific platforms: The ability to generate flexible & real-life Math equations. Not the conventional image files that you can't edit afterwards; but a live equation that can be customised as many times as user wishes.

$$J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \, \Gamma(m + \alpha + 1)}{\left({\frac{x}{2}}\right)}^{2 m + \alpha}$$

$$\iiint f(x,y,z)\,dx\,dy\,dz$$

$$A \alpha B \beta \Gamma \gamma \Delta \delta \dots \Phi \phi X \chi \Psi \psi \Omega \omega$$

$$C H_4$$

$V = \left( \begin{array}{ccc} 1-\frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{array} \right) + {\cal O}(\lambda^4)$

$$\int_{0}^{1} x dx = \left[ \frac{1}{2}x^2 \right]_{0}^{1} = \frac{1}{2}$$